
Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8018 http://www.webology.org

History-Based Dynamic Test Case Prioritization For

Requirement Properties In Regression Testing

Dr.Harsh Pratap Singh 1, Dr. B.Kavitha Rani 2, Appari Pavan Kalyan 3

1Research Guide, Dept. of Computer Science and Engineering Sri Satya Sai University of

Technology and Medical Sciences, Sehore Bhopal-Indore Road, Madhya Pradesh, India.

2Research Co-Guide, Professor, in Dept. of CSE, CMR Technical Campus, Hyderabad.

3Research Scholar, Dept. of Computer Science and Engineering Sri Satya Sai University of

Technology and Medical Sciences, Sehore Bhopal-Indore Road, Madhya Pradesh, India.

ABSTRACT

The process of regression testing is vital, but it is also quite expensive and time-consuming to

carry out. Because there are only so many resources available in practise, the prioritising of test

cases places an emphasis on the acceleration of the testing process. However, conventional

strategies for prioritising test cases place an emphasis primarily on one-time testing and do not

take into account the massive amounts of historical data provided by regression testing. Within

the scope of this work, an approach is proposed for ranking test cases by using historical data.

The requirements play a vital role in the process of testing; the priorities of test cases are

initialised based on the requirements' priorities in our history-based method, and they are

afterwards determined dynamically according to the historical data in regression testing. In

order to assess the effectiveness of our methodology, we will be carrying out an empirical study

on a real-world application. The findings of our experiments demonstrate an improvement in

performance for the strategy that we have proposed by employing measures of the “Average

Percentage of Faults Detected and the Fault Detection Rate”.

Keywords: dynamic, prioritization, regression

Introduction

To make great software engineering (SE) decisions, you must be aware of the business

repercussions. The majority of SE research is based on value-neutral environments, in which

all software creations are given equal importance. Value-based software engineering (VBSE)

considers value when designing software concepts and processes. Barry Boehm defines VBSE

as "the explicit concern with value issues in the application of science and mathematics".

Extreme programming, pair programming, and lean software development dominated early

agile software development research. These are three agile software development buzzwords.

This pattern is changing, with developed features and continual value delivery becoming the

focus. Trends include continuous value delivery and close interaction between business and

technical teams. Supposedly, software quality is value-based. Software customers are often

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8019 http://www.webology.org

concerned with the value software solutions provide to their organisations. Software improves

customers' businesses in many ways. Examine expenses and advantages. It's important to know

the value clients expect from the program's quality. Software testing is becoming more

important to match customer expectations for the program's value. Software testing is an

important and expensive component of the SDLC, consuming 40 to 50% of the budget.

Complexity, size, and support for real-time organisations have made software testing a must.

Software is growing and enabling real-time enterprises. All code statements, requirements, use

cases, circumstances, techniques, and scenarios are treated equally in software testing research.

Similar to other software development phases. Software testing jobs that don't add value and

have a low ROI are widespread (ROI)[18]. Software testing might cost $300 billion globally.

Value-neutral testing is testing that is independent of the product's commercial goals [9].

Value-based testing was suggested as a solution.

Value-based testing [8] evaluates software solutions to see if they can better match testing

resources to project objectives. Value-based testing requires integrating internal testing

objectives with company objectives and customer expectations. The focus is on delivering

customer value, not validating code against a list of requirements. According to, value-based

testing had a greater return on investment (ROI) of 1.74 with 40% of the most valuable test

cases, but value-neutral testing only produced a ROI of 1.22 with 100% of the tests. This means

testing resources should help the customer's business. During testing, both customer

expectations and stated specifications should be followed. As a result, testing methodologies

must focus on business value. VBSE includes value-based verification and validation.

Boehm estimates that testing accounts for 50% of the $1 trillion yearly cost of software. If more

money was invested in value-based testing, testing costs might be decreased by 60%, saving

$300 billion annually. Regression testing[28] is expensive and challenging in fast growing and

evolving systems. It takes a lot of time and effort and raises software maintenance costs. When

a code update is implemented, system testing is usually done immediately, and regression

testing can be done at the system, integration, or unit level. Time and resource constraints

prevent thorough test coverage during regression testing. Testing teams must decide how much

regression testing to perform. TCP, test case selection, test case reduction, and retesting are

four methodologies used during regression testing. Figure 1 displays regression testing types.

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8020 http://www.webology.org

Fig 1. Regression testing approaches.

The strategy of test selection is utilised rather frequently in the industry; yet, given that it is

based on selection, there is a possibility of danger associated with it. It is not possible to

guarantee that the test case reduction process will result in the removal of only irrelevant test

cases from the pool of test cases. “TCP, on the other hand, does not reduce the number of test

cases in the test suite nor does it delete any of them”. As a consequence of this, it is more

dependable, secure, and commonly utilised in actual clinical settings. There is a significant

amount of investigation being place “in this field”.

“Test case prioritization is one of the ways for optimized regression testing. Rothermel et al.

defined the TCP problem as follows. Suppose T is a test suite, PT is a set of permutations of

T, and f is a function from PT to real numbers, f: PT→R”.

“Prioritization Goal: To find a TI ∈ PT that maximizes f”.

TCP techniques consider test case set size, cost, time, effort, efficiency, defect count, and

repetitiveness. Most TCP solutions aim to increase problem detection by prioritising test cases

to save time and money (APFD). Two TCP alternatives have been suggested. Value-based and

neutral apparel are examples. When prioritising test cases for regression testing, consider both

cost and mistake severity. The value-neutral approach assumes all bugs are equally serious and

that testing costs are the same regardless of complexity. In reality, this premise is rare. Value-

based fashion ranks below value-neutral fashion.

The value-neutral TCP approaches assume all errors are handled equally based on severity and

cost. “Similar metrics, such as Average Percentage of Statement Coverage (APSC), Average

Percentage of Fault Detection (APFD), Total Percentage of Fault Detection (TPFS), Average

Percentage of Branch Coverage (APBC), Average Percentage of Function Coverage (APFC),

Average Percentage of Condition Coverage (APCC), and Average Percentage of X Elements

Coverage (APXEC), have been proposed to measure coverage. All of these measures assume

all faults are the same severity, all needs have the same value, and all code statements are

relevant; in practise, this is unlikely. Varied needs have different values, and defects vary in

severity. Similarly, functions, statements, conditions, branches, and methods can each have a

proportionally different value. Most TCP approaches are coverage-based. These unit-level

testing methodologies are time-consuming and assume all issues are of similar severity and

expense”.

BACKGROUND AND RELATED WORK

Test Case Prioritization Problem

In order to improve the effectiveness of the testing process, the test cases are prioritised

according to certain criteria in order to discover the greatest number of errors in the shortest

amount of time possible. The first recommendation that was made for a full characterisation of

the TCP issue was made “by Rothermel. Given three variables: T, an already selected test suite;

PT, a collection of all possible prioritizations (orderings) of T; and f, an objective function from

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8021 http://www.webology.org

PT to the real numbers that, when applied to any such ordering, produces an award value for

that ordering. The test suite T has already been selected”.

“Problem: Find T′ ∈ PT such that”

TCP INITIALIZATION

Classification of Requirement Properties

During the requirements phase, developers might obtain a number of requirement

characteristics; they must then implement these using code. During these phases, effective test

cases are designed, and each is related to the tested need's features. TCP considers each

component of a need since each has its own priority. The relative weight of each requirement

attribute is expressed by "Important Value," whose name comes from the term "importance."

We utilise these two criteria to rank the needs' many elements. CP refers to a customer's priority

for a required property. Customers will make their decision on this criterion. These levels help

us classify the key property requirements. Highest-level qualities relate to system functioning.

These features include exception and warning handling. “Higher-level properties handle data

input, output, and upgrading”. The remaining attributes level is considered the most basic.

Similarly, non-primary needs might be divided into two tiers. Lower-level attributes don't need

new data, while higher-level features do. CP IV assigns a level-dependent significance value

from 5 to 1 to a needed property r. This value is between those two extremes (r). “Table 1

shows the categorisation and CP IV assignment”.

Developers will apply a developer-assigned priority (DP) to each need characteristic. This

priority reflects the complexity of implementing that attribute. Developers make the final

decision on this task. The DP has five levels of standards. A needed property r obtains an

importance value from 5 to 1, denoted by DP IV, based on the developer's choice (r). Increasing

value increases implementation complexity. Higher-complexity required properties likely to

have more flaws. Complex implementation makes it harder to catch all problems. Because it

has the most problems, its property should be prioritised. Table 2's entire classification can be

utilised to determine a person's DP IV designation.

Table 1. Assignment of a “classification and CP IV number”

Table 2 Assignment and classification according to DP IV

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8022 http://www.webology.org

“According to Table 1 and Table 2, (of a requirement property r can be calculated as

following”:

Where (j = 1, 2) represents component importance. Total: $1. If we utilise a large value of,

customers will have more say over the required property's priority. If the vital property's

priority is high, developers have a stronger duty to obtain it. In the absence of a distinguishing

characteristic, each aspect of the experience would be given the same priority, a metric for

judging importance. One of the main purposes of learning is to learn how to change one's

behaviour for the better.

TCP Initialization

“The relationship matrix can be obtained once the IV of each requirement property is known.

Set and test suite of requirements. At least one test case in set T” meets all conditions. Any

object may match zero or more attributes. RP (t) = IV(r), hence the problem is solved. The

satisfiability relation between T and R is and the algorithm for determining S is.

As opposed to the 0-1 matrix, which is discussed in, S is the matrix in which the members are

actual integers. This sets it apart from the previous matrix. You are able to calculate the priority

value of a test case by adding up the individual values (IV) of the attributes that the test case

meets. This will give you the test case's priority value.

“HISTORY-BASED PRIORITIZATION”

“Dynamic adjustment of RP prioritization”

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8023 http://www.webology.org

“We first take into account of dynamic adjustment of IV. After testing the flaws that are

discovered are first recorded, and then they are assigned to the many properties that t fulfils.

This elucidates the total amount of problems that are connected to each essential attribute. If

this attempt results in fewer errors than the previous one did, it is considered successful.

is reduced by their difference, otherwise, is added by the difference. Therefore, RP (t)

must be recalculated and the test cases must be reordered. Equation 3 denotes the adjustment

calculation, where IV is the that satisfies, is the current value, and

 shows the most up-to-date result of the testing performed on the regressions. The

Dvalue fault is the value that is calculated by subtracting the total number of faults that are

found in two records that are located next to one another”.

RP prioritises. You can choose between “total adjusted RP prioritising and additional adjusted

RP prioritisation for dynamic RP adjustment. The total adjusted RP priority is used to rank test

cases from highest to lowest RP value. This is done to test the higher-risk scenario sooner in

the procedure. If multiple test scenarios have the same highest RP, we'll randomly choose one”.

The second technique, Additional modified RP prioritising, dynamically adjusts the “RP of the

remaining test cases after each best-case decision. Additional modified RP prioritising is used.

Executing the remaining test cases that cover the same attribute as the selected test cases

minimises system difficulties. Because the chosen test scenarios cover the property. As a result,

we'll define a modified RP prioritising below”.

Let Req “be the number of elements in set Req After the

execution of test case is reduced by Because it is likely that the RP of the

test cases will change after each choice of the best test case, it is essential to select the test case

that possesses the highest RP for the session that is now being carried out”.

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8024 http://www.webology.org

“Algorithm 2 is Additional adjusted RP prioritization method. Lines 1-4 show the method of”

IV A change was made after observing a discrepancy in the number of errors discovered

during two consecutive rounds of regression testing. We are now able to compute the RP for

each test scenario after making the appropriate modifications to the IV. You may find

additional adjusted RP prioritisation on lines 8-16, along with its two subsidiary functions,

which are called Select Best and Additional Strategy. These functions are located in the same

section as the main function. The necessary amount of time to make improvements in Lines 1-

4 “and the time required in Line5-7 to recalculate . Obviously, the

time required in Line8-16 is” depends on the amount of time that Algorithm 3 and

Algorithm 4 take to complete. As a result, the worst case scenario in terms of temporal

complexity is.

The third algorithm is called Select Best, and it uses the Greedy Algorithm to choose the best

possible answer at each stage of the process. The ranking of priorities is determined by going

in declining “order of RP. When the selection process” reaches a point when there are two or

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8025 http://www.webology.org

highest values that are the same, a single “test case must be chosen at random as the best option.

The temporal complexity of O has the highest ranking for Select Best (n)”.

The sub-function Additional Strategy “in Algorithm 4, which is called by Additional adjusted

RP prioritisation but not by Total adjusted RP prioritisation, is what differentiates Additional

adjusted RP prioritisation from Total adjusted RP prioritisation”. Therefore, the algorithm for

Total adjusted RP prioritising won't become too tedious to describe in this context. In

accordance with Additional Strategy, it is possible for the “RP values of the remaining test

cases to be altered throughout each selection. The O strategy has the highest temporal

complexity of the Additional Strategies (1)”.

History-based TCP framework

As part of our process, we will supply each test case with its own likelihood, and we will do so

by making use of past data. It is not always possible to carry out each and every test case during

each and every testing session. This is because of the limitations that are placed on both time

and resources. Because of this, we select the hypothetical test situations that have the highest

likelihood of occurring. In light of the fact that the equation that we establish for calculating

probabilities involves the RP value, we normalise RP as NRP:

The probability calculation is defined as follows:

“PK refers to the k-th probability for each test case executed, and initialization P1 is the first

NRP. The higher the value of P1 the larger the executing probability of test case is a

smoothing constant used to weigh individual history RP values, and the tester can assign it

according to the actual circumstance. If When it comes to selecting the value, if a high value

is picked, the probability is primarily dependent on the difference between the most recent two

test sessions. Aside from that, the history data of the entire phase is the most crucial thing to

take into consideration (beginning with the first session and continuing up to the current

session). Figure 1 provides a visual representation of the structure that underpins the method

of history-based test case prioritisation”.

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8026 http://www.webology.org

Figure 2. Framework of History-based Test Case Prioritization

In Fig.2 the document icon denotes the input/output document of every execution action. For

example the document icon represents the likelihood of each database-retrieved test case

used in the nth iteration of regression testing. Rectangle icon represents an action. Most

operations use equations or algorithms. The testing session database is represented as a

cylinder. This contains test case ordering and defect counts. This database stores test data. The

rounded-corner rectangle shows test scenarios and needed properties. Figure 1 shows data flow.

First, when performing regression testing, get all probability-assigned test cases from the

database. Next, execute n percent of the most likely test cases. So, we can learn about system

flaws. Then, it's computed using the difference between defects in two subsequent records.

Dynamic adjustment ensures that RP is calibrated with the T-R connection. Also, the nth

relative probability can be calculated. Using Equation 5, each test case's results may be

computed and stored as database history. This is a crucial step, not the least.

EMPIRICAL EVALUATION

We do an empirical evaluation in terms of the following research questions in order “to

investigate the efficacy of our history-based test case prioritising technique”.

RQ1: Whether using our initialization method for the first regression testing improves testing

efficiency?

It is general information that the “vast majority of research have not focused on first-time

ordering” Additionally, the startup of test instances is typically produced at random, as this is

the standard practise. The goal of this line of inquiry is to determine whether or not the method

of initialization that we use is more efficient than the way of initialization that is based on

randomization.

“RQ2: Is our history-based method more effective than other existing test case prioritization

techniques?”

“Our second line of inquiry analyses whether or not our history-based method can detect faults

earlier than other traditional test case prioritisation strategies, such as random prioritisation and

RP-based prioritisation, which are currently being utilised in the industry”.

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8027 http://www.webology.org

“RQ3: If there is time constraint, whether our history-based method can still improve testing

efficiency”

Due to the fact that there is a certain amount of time at our disposal, we are going to work on

the assumption that we will only be able to execute n percent (20 percent or 50 percent) of all

of the test cases. As part of this line of investigation, one of the questions that we want to

answer is whether or not the technique that we use that is based on history may still have a

higher rate of identifying flaws.

Prioritization strategies

Following this, in a condensed fashion, we will talk about four distinct test case prioritising

approaches for empirical comparison.

TCP initialization is the technique that we propose to employ for the initialization process, and

Section III provides a more in-depth discussion of it than was presented in the previous section.

To accomplish this goal, it first sorts the test cases in accordance with the importance of the

required attributes. We determined that a weight of 0.5 and 0.5, respectively, would be

appropriate. When random prioritising is being used, each test case is given an order that is

chosen at random. This method of prioritisation is the simplest of the three as it does not include

any technical procedures and is the least complicated. Because of the non-parametric character

of random approach, we utilised random prioritising on a number of different occasions for

each experiment [15]. This was done so that we could compare our results more accurately.

RP-based prioritising organises test cases in the order of decreasing RP (requirement priority)

values [3, 14], so that the test case with the highest RP can be executed first if that is the desired

outcome. This enables a more effective utilisation of the available testing resources. The

methodology that we recommend, known as a history-based prioritisation, is broken down and

discussed in greater detail in Section IV of this document. It is able to dynamically change the

sequence of the test cases in accordance with the historical fault information after each test

cycle has been completed and it has been put through its paces. The smoothing constant has

been given the value of 0.8 so that we can account for the change that took place between the

most recent two testing sessions.

Evaluation Metrics

APFD

The APFD (also known as the weighted average of percentage of faults discovered) is

concerned with the rate of fault detection that takes place during the course of a test suite.

Another name for this metric is the weighted average of percentage of faults discovered. The

higher the value, the earlier problems can be found while testing a programme; this benefit

increases proportionally with the value. The APFD methodology is based on the concept that

there is a high degree of similarity between two different orders, namely, faults and costs. The

APFD can be determined by applying the formula that is as follows:

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8028 http://www.webology.org

Where n is the total number of test instances and m is the total number of errors that occurred

during those test instances. The notation TF refers to the number of the first test case in the

execution sequence T that locates fault I, and it stands for "fault identifier."

Fault Detection Rate

Because our experiment required a significant investment of effort on our part, there were times

when we were unable to carry out each and every one of the test situations. The ability of a

company to detect mistakes within particular intervals of execution time is referred to as the

"Fault Detection Rate" (FDR), and it is measured in percentage terms. The following is our

interpretation of what that phrase means:

“O FDT is the optimal prioritisation technique that sorts test cases according to the number of

faults detected in each case, where FDT is the number of faults detected by the current

prioritisation technique during a certain execution time, and where FDT is the number of faults

detected by the current prioritisation technique during a certain execution time. This ability to

recognise difficulties in the prioritisation process while it is being carried out grows in direct

proportion to the value of FDR, which means that the higher the value of FDR the greater the

capacity there is to spot faults in the process as it is being carried out”.

Results and Analysis

“In this section, we report the findings of the experiments that we conducted and discuss how

those findings relate to the research topics posed earlier”.

“RQ1: test efficiency comparison between TCP initialization and random initialization”

The first research topic that we address when we employ our TCP initialization approach for

the first round of regression testing is whether or not it is possible to improve the fault-detection

capabilities of the system. Experiment 1a, which involved the TCP initialization technique, and

Experiment 1b, which involved the random initialization technique, were designed to provide

an answer to the question "Will differences in initialization method cause significant

differences in fault detection?" Experiment 1a involved the TCP initialization technique, and

Experiment 1b involved the random initialization technique. Because we had a preconceived

notion that this would turn out to be the case, we decided to construct two experiments to look

into the matter. Twenty separate instances of random initialization were carried out so that we

could investigate this research issue. This is due to the fact that it does not employ parameters.

This response is the mean of twenty different data points, and it is presented for your

consideration below. Each process is carried out on the same subject, and the same version of

the programme is used for both.

Table 3 APFD for initialization

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8029 http://www.webology.org

Figure 3.APFD for initialization

Figure 3 examines two approaches' relationships between test cases executed and defects

identified. Figure 3 show that our TCP initialization may detect faults faster than random

initialization. Table 3 shows that the test sequence's APFD is 55.48% higher than the random

initialization. Ordering test cases based on required attributes is more efficient for regression

testing than random ordering. Our system's initialization saves time and resources. Although

startup is slow, random seems to reduce testing time. This isn't true. Regression testing uses

initialization data. If you randomly order test cases when utilising our history-based method to

prioritise them, you'll need to calculate that information in subsequent cycles. Global testing

equals TCP starting time. Random initialization is preferred to TCP.

“RQ2: test efficiency compared with other existing test case prioritization for regression

testing”

Our second research question examines if a history-based prioritising strategy might increase

test efficiency relative to existing methods. Experiment2a uses random test case prioritisation,

Experiment2b uses RP, and Experiment2c uses history. This research question is answered by

three experiments. We use the same experimental approach, but switch from version 2.1 to 2.5

and execute five regression tests. Non-parametric history-based approach is run 20 times per

cycle. Other algorithms use it. Figure 3 shows each TCP approach's APFD distribution “for

five-times regression testing. The APFD value is vertical, and the number of versions is

horizontal. The rhombus legend represents random prioritisation, the square legend RP-based

prioritisation, and the circle legend history-based prioritisation. Each legend represents a TCP

method. Fig.4 shows that the history-based prioritising technique has higher APFD values than

the random strategy in all versions, and that starting with version 2.2, it is also superior to the

RP-based method”.

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8030 http://www.webology.org

Figure 4.APFD for regression.

“Table 4 shows the regression test results, median, average, and standard deviation” for each

TCP technique. Table 4 shows our history-based prioritisation strategy is more efficient than

others. History-based prioritising APFD values are greater than random and RP-based

prioritising in version 2.1. Version 2.5's history-based prioritisation algorithm achieves 89.54

percent APFD. Higher APFD scores allow for faster problem identification. Due to the

unpredictability of the choosing process, random prioritising is generally less effective than

average. Unstable. Random prioritisation found the APFD to be lowest. We utilise a one-tail t-

test to determine if the measurements' results are useful. We'll assume f1 and f2 are APFD

values prioritised using two separate algorithms. Both “are considered”:

“H0: f1 = f2, if two techniques have the same effectiveness of fault detection”.

“H1: f1> f2, if f1 is significantly better than f2”.

If the p-value is less than the significance level (α = 0.05), our results prove to have significantly

reliability.

Table 5 shows the statistical analysis of five system versions. Table 5 shows history-based

prioritisation is better than random and RP. History-based prioritisation has a t statistic larger

than 0 and a p-value less than 0.05. History-based prioritisation is significantly different from

other methods rather than randomly Table 5's t-value of 3.7267 suggests the variable is

approaching null. According to the values, history-based prioritising detects problems more

effectively. According to APFD's statistical analyses, t=2.5882 (t>0) and p=0.0304 (p0.05)

suggest a substantial difference “between the two procedures. History-based prioritisation is

better than role-playing”.

Table 5 Statistical analyses of APFD

TCP

Techniques

t Stat p-value (one-tail)

History-

based vs

Random

3.7267 0.0102

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8031 http://www.webology.org

History-

based vs

RP-based

2.5882 0.0304

 “RQ3: time constraint in regression testing our final study question examines whether

history-based testing can enhance efficiency when time is limited”. We'll only perform n

percent of the test scenarios due to time constraints. Experiment3a, 3b, and 3c involved 20%

of test instances; Experiment3d, 3e, and 3f involved 50%. We plan six experiments to test our

premise that differences in n% will affect fault detection. 20% of test instances were used in

Experiments3a, 3b, and 3c. Similar to RQ2's experiments, but with a larger time limit. Table

“6 shows the FDR values of each regression test for each TCP technique, together with their

medians, averages, and standard deviations for executing 20% or 50% of the test cases”.

History-based prioritising has a median value of 78.31% when 20% of test cases are run and

an average value of 82.986%, both substantially higher than alternative strategies. History-

based prioritisation FDR values reach 100% in the first three runs of regression testing. Fourth-

round regression testing decreases the FDR to 78.31%. This is because defects multiply and

new ones are added. Random prioritising is the least successful technique since its median and

average are lowest. History-based prioritising has the greatest median and average values and

the largest FDR in the fifth round of regression testing. History-based prioritisation runs more

tests. The number of errors lowers to single digits during the third round of regression testing,

and after two rounds of prioritising, we can detect practically all of the faults in 50% of the test

cases.

Overall analysis

“History-based prioritising beats random or one-time test case prioritisation (RP-based

prioritization). History-based prioritising is excellent for regression testing when running all

test cases because it finds flaws quickly. Even with time constraints and not enough time to

perform all test cases, history-based prioritising is successful”.

Threats to Validity

Threats to internal validity

Effective requirements classification might reduce internal validity. We used a five-point scale

to reduce this risk. Weighting provides another risk to the study's internal validity, thus we

should base our conclusions on reality. When there is no empirical evidence for weights, using

same weights can reduce risk. To lessen the threat, we set and.

Threats to external validity

“We use an industrial project as our experiment objective. The situation of fault occurrence

may be different in other projects”

“Table 4: APFD and its median, average, and standard deviation of several TCP

techniques (%)”

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8032 http://www.webology.org

“Table 5: FDR and its median, average, and standard deviation of several TCP

techniques (%)”

Which we have not made use of thus far. However, the defect occurrence is something that

actually happens in industrial projects, and not something that we artificially seed, thus we

believe that our experiment can be indicative of a number of different scenarios.

CONCLUSION

This study suggests a history-based test case prioritisation and first regression testing startup.

Both are regression testing-related. “Our initialization method is more efficient than the random

method due to natural faults and non-uniform distribution properties. Our investigations show

that our history-based TCP solution has the best fault-detection” capability. Regression testing

is affected. Our approach has some flaws. When faults are subdivided by property, redundant

faults may result. Future plans may include eliminating unneeded repetition. We want to

expand this experiment to incorporate more sophisticated programmes, such as ones with a

range of error distributions.

REFERENCES

1. Faulk S. R., Harmon R. R., and Raffo D. M. “Value-Based Software Engineering

(VBSE),” in Software Product Lines, Donohoe P., Ed. Boston, MA: Springer US, 2000,

pp. 205–223.

2. D. Zhang. “Machine Learning in Value-Based Software Test Data Generation,” in 2006

18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06),

Nov. 2006, pp. 732–736.

3. Boehm B. W. “Value-Based Software Engineering: Overview and Agenda,” in Value-

Based Software Engineering, Biffl S., Aurum A., Boehm B., Erdogmus H., and

Grünbacher P., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 3–14.

4. Dingsøyr T. and Lassenius C. “Emerging themes in agile software development:

Introduction to the special section on continuous value delivery,” Inf. Softw. Technol.,

vol. 77, pp. 56–60, 2016.

5. On the Economics of Requirements-Based Test Case…—Google

Scholar.” https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=On+the+

https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=On+the+Economics+of+Requirements-Based+Test+Case+Prioritization&btnG=

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8033 http://www.webology.org

Economics+of+Requirements-Based+Test+Case+Prioritization&btnG= (accessed

Sep. 16, 2018).

6. D. Saff and M. D. Ernst. “Reducing wasted development time via continuous testing,”

in 14th International Symposium on Software Reliability Engineering, 2003. ISSRE

2003., Nov. 2003, pp. 281–292.

7. Zhang X., Onita C. G., and Dhaliwal J. S. “The impact of software testing governance

choices,” J. Organ. End-User Comput. JOEUC, vol. 26, no. 1, pp. 66–85, 2014.

8. Ramler R., Biffl S., and Grünbacher P. “Value-Based Management of Software

Testing,” in Value-Based Software Engineering, Biffl S., Aurum A., Boehm B.,

Erdogmus H., and Grünbacher P., Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2006, pp. 225–244.

9. R. Ramler, T. Kopetzky, and W. Platz. “Value-based coverage measurement in

requirements-based testing: Lessons learned from an approach implemented in the

tosca test suite,” in 2012 38th Euromicro Conference on Software Engineering and

Advanced Applications, 2012, pp. 363–366.

10. Boehm B. “Value-Based Software Engineering,” ACM SIGSOFT, vol. 28, no. 2, p. 12.

11. Elbaum, S., Malishevsky, A. G. and Rothermel, G. 2000. Prioritizing test cases for

regression testing. In Proceedings of the 2000 ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA '00). 102-112.

12. Elbaum, S., Malishevsky, A. G., and Rothermel, G. 2002. Test case prioritization: A

family of empirical studies. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 159-182.

13. Srikanth, H. and Banerjee, S. 2012. Improving test efficiency through system test

prioritization. J. Syst. Softw. 85, 5 (May. 2012), 1176-1187.

14. Kim, J. M. and Porter, A. 2002. A history-based test prioritization technique for

regression testing in resource constrained environments. In Proceedings of the 24th

International Conference on Software Engineering (ICSE’02). 119-129.

15. Zhang, X., Nie, C., Xu, B., and Qu, B. 2007. Test case prioritization based on varying

testing requirement priorities and test case costs. In Proceedings of the 7th International

Conference on Quality Software (QSIC'07). 15–24.

16. Huang, Y. C., Peng, K. L., and Huang, C. Y. 2012. A history-based cost-cognizant test

case prioritization technique in regression testing. J. Syst. Softw. 85, 3 (Mar. 2012),

626-637.

17. Wang, X. and Zeng, H. 2014. Dynamic test case prioritization based on multi-objective.

In Proceedings of the 15th International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD'14). 1-6.

18. Ram Kumar, Jasvinder Pal Singh, Gaurav Srivastava, “A Survey Paper on Altered

Fingerprint Identification & Classification” International Journal of Electronics

Communication and Computer Engineering ,Volume 3, Issue 5, ISSN (Online): 2249–

071X, ISSN (Print): 2278–4209.

19.

20. Rothermel, G. and Harrold, M. J. 1996. Analyzing regression test selection techniques.

IEEE Trans. Softw. Eng. 22, 8 (Aug. 1996), 529-551.

https://scholar.google.com.pk/scholar?hl=en&as_sdt=0%2C5&q=On+the+Economics+of+Requirements-Based+Test+Case+Prioritization&btnG=

Webology (ISSN: 1735-188X)
Volume 18, Number 6, 2021

8034 http://www.webology.org

21. Lin, C. T., Chen, C. D., Tsai, C. S. and Kapfhammer, G. M. 2013. History-based test

case prioritization with software version awareness. In Proceedings of the 18th

International Conference on Engineering of Complex Computer Systems

(ICECCS’13). 171-172.

22. Marijan, D., Gotlieb, A., and Sen, S. 2013. Test case prioritization for continuous

regression testing: An industrial case study In Proceedings of the 29th International

Conference on Software Maintenance (ICSM’13). 540-543.

23. Yoo, S. and Harman, M. 2012. Regression testing minimization, selection and

prioritization: a survey. Softw. Test. Verif. Reliab. 22, 2 (Feb. 2012), 67-120.

24. Saha, R. K, Zhang, L., Khurshid, S., and Perry, D. E. 2015. An Information Retrieval

Approach for Regression Test Prioritization Based on Program Changes. In

Proceedings of the 37th International Conference on Software Engineering (ICSE’15).

268-279.

25. Arafeen, M. J., and Do, H. 2013. Test case prioritization using requirements-based

clustering. In Proceedings of the 6th International Conference on Software Testing,

Verification, and Validation (ICST’13). 312-321.

26. Li, S., Bian, N., Chen, Z., You, D., and He, Y. 2010. A simulation study on some search

algorithms for regression test case prioritization. In Proceedings of the 10th

International Conference on Quality Software (QSIC'10). 72-81.

27. Arcuri, A, and Briand, L. 2011. A practical guide for using statistical tests to assess

randomized algorithms in software engineering. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE’11). 1–10.

28. Kumar, R., Singh, J.P., Srivastava, G. (2014). Altered Fingerprint Identification and

Classification Using SP Detection and Fuzzy Classification. In: , et al. Proceedings of

the Second International Conference on Soft Computing for Problem Solving (SocProS

2012), December 28-30, 2012. Advances in Intelligent Systems and Computing, vol

236. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1602-5_139

